新闻搜索
电子的质量怎样认识
作者:管理员    发布于:2017-01-20 09:42:10    文字:【】【】【

电子的实验理论
根据普朗克关系式,光子的频率与能量成正比。当一个束缚电子跃迁于原子的不同能级的轨域之间时,束缚电子会吸收或发射具有特定频率的光子。例如,当照射宽带光谱的光源于原子时,很明显特别的吸收光谱会出现于透射辐射的光谱。每一种元素或分子会显示出一组特别的吸收光谱,像氢光谱。光谱学专门研究测量这些谱线的强度和宽度。细心分析这些数据,即可得知物质的组成元素和物理性质。
在实验室操控条件下,电子与其它粒子的相互作用,可以用粒子探测器。来仔细观察。电子的特征性质,像质量、自旋和电荷等等,都可以加以测量检验。四极离子阱和潘宁阱。可以长时间地将带电粒子限制于一个很小的区域。这样,科学家可以准确地测量带电粒子的性质。例如,在一次实验中,一个电子被限制于潘宁阱的时间长达10个月之久。
1980年,电子磁矩的实验值已经准确到11个位数。在那时候,是所有测得的物理常数中,最准确的一个。于2008年2月,隆德大学的一组物理团队首先拍摄到电子能量分布的视讯影像。科学家使用非常短暂的闪光,称为阿托秒。脉冲,率先捕捉到电子的实际运动状况。
在固态物质内,电子的分布可以用角分辨光电子谱来显像。应用光电效应理论,这科技照射高能量辐射于样品,然后测量光电发射的电子动能分布和方向分布等等数据。仔细地分析这些数据,即可推论固态物质的电子结构。
放射性物质
于1896年,在研究天然发萤光矿石的时候,法国物理学家亨利·贝克勒尔发现,不需要施加外能源,这些矿石就会自然地发射辐射。这些放射性物质引起许多科学家的兴趣,包括发现这些放射性物质会发射粒子的新西兰物理学家欧尼斯特·卢瑟福。按照这些粒子穿透物质的能力,卢瑟福替这些粒子分别取名为阿尔法粒子和贝他粒子(“阿尔法”是希腊字母的第一个字母“α”,“贝他”是第二个字母“β”)。于1900年,贝克勒尔发现,镭元素发射出的贝他射线,会被电场偏转;还有,贝他射线和阴极射线都有同样的质量-电荷比例这些证据使得物理学家更强烈地认为电子本是原子的一部分,贝他射线就是阴极射线。
油滴实验
约瑟夫·汤姆逊,电子的发现者
约瑟夫·汤姆逊,电子的发现者
美国物理学家罗伯特·密立根于1909年做了一个著名实验,准确地测量出电子的带电量。这实验称为油滴实验。在这实验里,他使用电场的库仑力来平衡带电油滴所感受到的引力。从电场强度,他计算出油滴的带电量。他的仪器可以测量出含有1~150个离子的油滴的带电量,误差小于0.3%。他发现每一颗油滴的带电量都是同一常数的倍数,因此,他推论这常数必是电子的带电量。
汤姆逊和学生约翰·汤森德John Townsend。使用电解的离子气体来将过饱和水蒸气凝结,经过测量带电水珠粒的带电量,他也得到了相似结果。于1911年,亚伯兰·约费Abram Ioffe。使用带电金属微粒子,独立地得到同样的结果.他发表这结果于1911年。但是,油滴比水滴更稳定,油滴的蒸发率较低,比较适合更持久的精准实验。
二十世纪初,实验者发现,快速移动的带电粒子会在经过的路径,使过冷却、过饱和的水蒸气凝结成小雾珠。于1911年,应用这理论,查尔斯·威耳逊设计出云室仪器。实验者可以用照相机拍摄快速移动电子的轨道。这是早期研究基本粒子的重要仪器。
原子理论
在不同的时代,人们对电子在原子中的存在方式有过各种不同的推测。
最早的原子模型是汤姆孙的梅子布丁模型。发表于1904年,汤姆逊认为电子在原子中均匀排列,就像带正电布丁中的带负电梅子一样。1909年,著名的卢瑟福散射实验彻底地推翻了这模型。
卢瑟福根据他的实验结果,于1911年,设计出卢瑟福模型。在这模型里,原子的绝大部分质量都集中在小小的原子核中,原子的绝大部分都是真空。而电子则像行星围绕太阳运转一样围绕着原子核运转。这一模型对后世产生了巨大影响,直到现在,许多高科技组织和单位仍然使用电子围绕着原子核的原子图像来代表自己。
在经典力学的框架之下,行星轨道模型有一个严重的问题不能解释:呈加速度运动的电子会产生电磁波,而产生电磁波就要消耗能量;最终,耗尽能量的电子将会一头撞上原子核(就像能量耗尽的人造卫星最终会进入地球大气层)。于1913年,尼尔斯·玻尔提出了玻尔模型。在这模型中,电子运动于原子核外某一特定的轨域。距离原子核越远的轨域能量越高。电子跃迁到距离原子核更近的轨域时,会以光子的形式释放出能量。相反的,从低能级轨域到高能级轨域则会吸收能量。藉著这些量子化轨域,玻尔正确地计算出氢原子光谱。但是,使用玻尔模型,并不能够解释谱线的相对强度,也无法计算出更复杂原子的光谱。这些难题,尚待后来量子力学的解释。
1916年,美国物理化学家吉尔伯特·路易士成功地解释了原子与原子之间的相互作用。他建议两个原子之间一对共用的电子形成了共价键。于1923年,沃尔特·海特勒Walter Heitler和弗里茨·伦敦Fritz London应用量子力学的理论,完整地解释清楚电子对产生和化学键形成的原因。于1919年,欧文·朗缪尔将路易士的立方原子模型cubical atom。加以发挥,建议所有电子都分布于一层层同心的(接近同心的)、等厚度的球形壳。他又将这些球形壳分为几个部分,每一个部分都含有一对电子。使用这模型,他能够解释周期表内每一个元素的周期性化学性质。
于1924年,奥地利物理学家沃尔夫冈·泡利用一组参数来解释原子的壳层结构。这一组的四个参数,决定了电子的量子态。每一个量子态只能容许一个电子占有。(这禁止多于一个电子占有同样的量子态的规则,称为泡利不相容原理)。这一组参数的前三个参数分别为主量子数、角量子数和磁量子数。第四个参数可以有两个不同的数值。于1925年,荷兰物理学家撒姆耳·高斯密特Samuel Abraham Goudsmit和乔治·乌伦贝克George Uhlenbeck提出了第四个参数所代表的物理机制。他们认为电子,除了运动轨域的角动量以外,可能会拥有内在的角动量,称为自旋,可以用来解释先前在实验里,用高分辨率光谱仪观测到的神秘的谱线分裂。这现象称为精细结构分裂。
量子力学
于1924年,法国物理学家路易·德布罗意在他的博士论文《Recherches sur la théorie des quanta》(《Research on Quantum Theory》)里,提出了德布罗意假说,假设所有物质都拥有像光子一样的波粒二象性;也就是说,在适当的条件下,电子和其它物质会显示出粒子或波动的性质。假若,物理实验能够显示出,随着时间演化,粒子运动于空间轨道的局域位置,则这实验明确地显示了粒子性质。像光波一类的波动,通过双缝实验的双缝后,会产生干涉图案于探测屏障。这现象毫无疑问地分辨出波动性质。于1927年,英国物理学家乔治·汤姆孙用金属薄膜,美国物理学家克林顿·戴维孙和雷斯特·革末用镍晶体,分别发现了电子的干涉效应。
德布罗意的博士论文给予埃尔温·薛定谔很大的启示:既然粒子具有波动性,那必定有一个波动方程,能够完全地描述这粒子的物理行为。于1926年,薛定谔想出了薛定谔方程。这方程能够描述电子波的传播机制。它并不能命定性地给出电子的明确运动轨道,电子在任意时间的位置。但是,它可以计算出电子处于某位置的几率,也就是说,在某位置找到电子的几率。薛定谔用自己想出的方程来计算氢原子的谱线,得到了与用玻尔模型的预测相同的答案(更详细资料,请参阅氢原子)。薛定谔方程的波动概念,为量子力学创立了一个新的发展平台。再进一步将电子的自旋和几个电子的互相作用纳入考量,薛定谔方程也能够给出电子在其它原子序较高的原子内的电子组态。
于1928年,保罗·狄拉克研究出狄拉克方程。这公式能够描述相对论性电子的物理行为。相对论性电子是移动的速度接近光速的电子。为了要解释狄拉克方程的自由电子解所遇到的反常的负能量态问题,狄拉克提出了一个真空模形,称为狄拉克之海:即真空是挤满了具有负能量的粒子的无限海。因此,他预言宇宙中存在有正子(电子的反物质搭配)。于1932年,卡尔·安德森在宇宙射线实验中首先证实了正子的存在。
于1947年,威利斯·兰姆在与研究生罗伯特·雷瑟福Robert Retherford合作的实验中,发现氢原子的某些应该不会有能量差值的简并态,竟然出现很小的能量差值。这现象称为兰姆位移。大约同年代,波利卡普·库施助手模板和亨利·福立Henry Foley。在共同完成的一个实验中,发现电子的异常磁矩,即电子的磁矩比狄拉克理论的预估稍微大一点。为了解释这些现象,朝永振一郎、朱利安·施温格和理察·费曼,于1940年代,创建了量子电动力学。
粒子加速器
二十世纪的前半世纪,粒子加速器运作所需的理论与设备都已发展成熟。物理学家可以开始更进一步的研究亚原子粒子的性质。1942年,唐纳德·克斯特Donald Kerst。首先成功地使用电磁感应将电子加速至高能量。在他领导下,贝他加速器最初的能量达到2.3MeV;后来,能量更达到300MeV。1947年,在通用电器实验室,使用一台70MeV电子同步加速器,物理学家发现了同步辐射,移动于磁场的相对论性电子因为加速度而发射的辐射。
1968年,第一座粒子束能量高达1.5GeV的粒子对撞机,名为大储存环对撞机ADONE。在意大利的核子物理国家研究院。开始运作。这座对撞机能够将电子和正子反方向地分别加速。与用电子碰撞一个静止标靶相比较,这方法能够有效地使对撞能量增加一倍。从1989年运做到2000年,位于瑞士日内瓦近郊,欧洲核子研究组织的大型电子正子对撞器,能够实现高达209GeV的对撞能量。这对撞器曾经完成多项实验,对于考练与核对粒子物理学的标准模型的正确性有莫大的贡献。[6]
质量测量
电子的质量出现在亚原子领域的许多基本法则里,但是由于粒子的质量极小,直接测量非常困难。一个物理学家小组克服了这些挑战,得出了迄今为止最精确的电子质量测量结果。
将一个电子束缚在中空的碳原子核中,并将该合成原子放入了名为彭宁离子阱的均匀电磁场中。在彭宁离子阱中,该原子开始出现稳定频率的振荡。该研究小组利用微波射击这个被捕获的原子,导致电子自旋上下翻转。通过将原子旋转运动的频率与自旋翻转的微波的频率进行对比,研究人员使用量子电动力学方程得到了电子的质量。

 

脚注信息
联系人: 舒先生    联系电话: 13908182421   传真:028-85973150  
E-mail:cdzydz@126.com   详细地址: 四川省成都市成华区荆翠西路2号7栋10层1012号   邮编: 610041
版权所有2012  成都忠源电子科技有限公司 产品推荐:发动机启动电源|大功率充电机|大功率开关电源|蓄电池充电机|电动汽车充电|
߿ͷ